Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО		УТВЕРЖДАЮ Заведующий кафедрой		
Заведующий кафо	едрой			
Базовая кафедра		Базовая кафедра	вычислительных	
вычислительных и и информационных технолог				
информационных	х технологий	(ВиИТ_ФМиИ)		
(ВиИТ нф.Ми.И.) е ка	афедры	наименование кафедры		
		д.фм.н., профес	сор Шайдуров	
		B.B.		
подпись, инициалы,	фамилия	подпись, инициа	лы, фамилия	
«»	20г.	« <u></u> »	20г.	
институт, реализующ	ий ОП ВО	институт, реализу	ющий дисциплину	
	РЕШЕНИ	ММА ДИСЦИПЈ НЫЕ МЕТОДЫ Я ЗАДАЧ СКОЙ ФИЗИКИ		
		ьютерные методы ре	ешения задач	
Man	ематической физі	ИКИ		
Направление подго	отовки /02.04.0	1 Математика и ком	пьютерные науки	
специальность	Магист	терская программа 0	2.04.01.02	
Направленность	Rышис	питепьцав математи	ra	
(профиль)				
Форма обучения	очная			
Год набора	2020			

Красноярск 2021

РАБОЧАЯ ПРОГРАММА ЛИСПИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования с учетом профессиональных стандартов по укрупненной группе

020000 «КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ»

Направление подготовки /специальность (профиль/специализация)

Направление 02.04.01 Математика и компьютерные науки Магистерская программа 02.04.01.02 Вычислительная математика

Программу составили

канд. физ.-мат.наук, Доцент, Гилева Л.В.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Формирование у студентов знаний о наиболее употребляемых в настоящее время численных методов и приемов их алгоритмической реализации при решении многомерных задач механики сплошной среды.

1.2 Задачи изучения дисциплины

Задачей изучения дисциплины является: получение теоретических знаний и практических навыков численного решения многомерных задач аэро- и гидродинамики, теории упругости и пластичности.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ПК-5:Способен создавать и исследовать новые математические модели в					
естественных	естественных науках, промышленности и бизнесе, с учетом возможностей				
_	современных информационных технологий, программирования и				
компьютерно	й техники				
Уровень 1	- современные информационные технологии, информационные				
	системы и ресурсы в области профессиональной деятельности;				
	- основные понятия и методы математического моделирования;				
	- существующие в настоящее время программные комплексы				
	реализации сложных алгоритмов;				
Уровень 1	- разрабатывать и анализировать модели функционирования объектов				
	и процессов;				
	- разрабатывать математические и информационные модели и				
	алгоритмы для решения прикладных задач;				
	- адаптировать задачи из различных областей наукри и практики для				
	представления их в терминах дисциплины с использованием				
	современного математического аппарата и информационных				
	технологий;				
	- выбирать необходимые методы анализа, модифицировать				
	существующие и разрабатывать новые методы и алгоритмы;				
Уровень 1	- фундаментальными знаниями в области математического,				
	физического и программного моделирования;				
	- навыками разработки алгоритмов для решения поставленных				
	научных и практических задач профессиональной деятельности;				
	- навыками применения информационно технологий для задач				
	профессиональной деятельности;				
	- навыками интерпретации результатов проведенного исследования				
	при решении поставленных задач;				

1.4 Место дисциплины (модуля) в структуре образовательной

программы

Дисциплина «Компьютерные методы решения задач математической физики» согласно учебному плану входит в число дисциплин по выбору вариативной части профессионального цикла по направлению 02.04.01 «Математика и компьютерные науки» магистерской программы 02.04.01.01 «Математическое и компьютерное моделирование».

Дисциплина изучается в третьем семестре магистратуры и продолжает формирование профессиональных компетенций студента.

При изучении дисциплины «Компьютерные методы решения соответствии математической физики» студенты, квалификационной характеристикой, должны использовать знания, полученные при изучении следующих дисциплин бакалаврской программы:

Математического и естественнонаучного цикла Численные методы;
Языки и методы программирования;
Профессионального цикла
Дискретная математика;
Программирование;
Базы данных;
Архитектура ЭВМ;
Операционные системы;
Дифференциальные уравнения;
Уравнения математической физики;
Математическое моделирование;
Параллельное программирование.

1.5 Особенности реализации дисциплины Язык реализации дисциплины Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Семестр
Вид учебной работы	Всего, зачетных единиц (акад.час)	3
Общая трудоемкость дисциплины	5 (180)	5 (180)
Контактная работа с преподавателем:	1,06 (38)	1,06 (38)
занятия лекционного типа	0,53 (19)	0,53 (19)
занятия семинарского типа		
в том числе: семинары		
практические занятия	0,53 (19)	0,53 (19)
практикумы		
лабораторные работы		
другие виды контактной работы		
в том числе: групповые консультации		
индивидуальные консультации		
иная внеаудиторная контактная работа:		
групповые занятия		
индивидуальные занятия		
Самостоятельная работа обучающихся:	2,94 (106)	2,94 (106)
изучение теоретического курса (ТО)		
расчетно-графические задания, задачи (РГЗ)		
реферат, эссе (Р)		
курсовое проектирование (КП)	Нет	Нет
курсовая работа (КР)	Нет	Нет
Промежуточная аттестация (Экзамен)	1 (36)	1 (36)

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

	занятии)		1			T
				ятия кого типа		
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)	Семинар ы и/или Практиче ские занятия (акад.час)	Лаборато рные работы и/или Практику мы (акад.час)	Самостоя тельная работа, (акад.час)	Формируемые компетенции
1	2	2	1	5	6	7
1	Описание наиболее употребимых одномерных разностных схем и их обобщение на многомерный случай.	2	1	0	11	
2	Исследование свойств разностных методов многомерных задач.	2	2	0	12	
3	Экономичные разностные схемы решения многомерных задач.	2	2	0	11	
4	Численные методы решения уравнений газовой динамики.	3	3	0	16	

5	Численные методы решения уравнений Навье -Стокса сжимаемого теплопроводного газа и несжимаемой жидкости.	3	3	0	16	
6	Конечноразностные методы, метод конечных объемов, метод конечных элементов, метод граничных элементов, метод частиц в ячейках.	2	2	0	16	
7	Методы повышения точности решений.	3	3	0	12	
8	Реализация численных методов в современных математических пакетах Mathcad, Matlab.	2	3	0	12	
Всего		19	19	0	106	

3.2 Занятия лекционного типа

				Объем в акад.ча	cax
№ п/п	№ раздела дисциплин ы	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Разностные схемы для одномерных уравнений переноса и диффузии.	1	0	0
2	1	Эффективные разностные схемы для многомерных уравнений переноса и диффузии.	1	0	0

3	2	Аппроксимация, устойчивость и сходимость. Требования к численным алгоритмам.	1	0	0
4	2	Разностные схемы для стационарных и нестационарных пространственных течений. Линеаризованные модели. Критерии устойчивости разностных схем.	1	0	0
5	3	Методы расщепления по направлениям и физическим процессам. Слабая аппроксимация.	1	0	0
6	3	Метод факторизации. Устойчивость схем в многомерном случае.	1	0	0
7	4	Разностные схемы С.К. Годунова для многомерных задач газовой динамики.	1	0	0
8	4	Сеточно- характеристический метод для численного решения уравнений газовой динамики.	1	0	0
9	4	Методы Бориса-Брука. TVD-схемы.	1	0	0
10	5	Уравнения Навье- Стокса для сжимаемой жидкости. Построение сеток.	1	0	0
11	5	Явный и неявный методы Мак-Кормака. Обзор других методов.	1	0	0
12	5	Уравнения Навье- Стокса для несжимаемой жидкости. Методы расщепления.	1	0	0
13	6	Методы конечных объёмов и конечных элементов.	1	0	0

18	8	задач газовой динамики в пакетах Maple, Mathcad и Matlab.	2	0	0
		Возможности численного решения			
17	7	Компактные схемы. Принципы построения. Многомерный случай.	1	0	0
16	7	Схемы повышенного порядка точности. Аппроксимация на расширенном шаблоне.	1	0	0
15	7	Неравномерные сетки. Преобразование координат. Адаптивные сетки.	1	0	0
14	6	Методы граничных элементов. Метод частиц в ячейках Харлоу.	1	0	0

3.3 Занятия семинарского типа

	No			Объем в акад.час	ax
№ п/п	раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Построение и исследование разностных схем для одномерных уравнений переноса и диффузии.	1	0	0
2	2	Требование к разностным схемам. Исследования на устойчивость разностных схем в одномерном случае.	1	0	0
3	2	Исследование на устойчивость в многомерном случае.	1	0	0
4	3	Расщепление по физическим процессам и пространственным переменным в многомерном случае дифференциальных уравнений и разностных схем.	2	0	0

5	4	Характеристики уравнений газовой динамики. Слабые и сильные разрывы.	1	0	0
6	4	Метод характеристик для задач газовой динамики.	1	0	0
7	4	Исследование методов Бориса-Брука и TVD-схем.	1	0	0
8	5	Методы построения подвижных схем.	1	0	0
9	5	Исследование методов Мак-Кормака	1	0	0
10	5	Методы расщепления и факторизации.	1	0	0
11	6	Вариационный метод Ритца. Проекционный метод Галёркина. Применение метода конечных элементов для нестационарных уравнений.	2	0	0
12	7	Метод Кранка-Николсона. Метод «предиктор- корректор»	1	0	0
13	7	Схемы повышенной точности.	1	0	0
14	7	Методы дробных шагов, разработанные Н.Н. Яненко.	1	0	0
15	8	Решение с помощью пакета Matlab задачи о распаде разрыва.	2	0	0
16	8	Визуализация результатов расчётов в пакете Matlab.	1	0	0
Poor			10	0	0

3.4 Лабораторные занятия

NG.		Объем в акад.часах			
№ п/п	№ раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
Dagre	,				

4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

	Авторы,	Заглавие	Издательство,
	составители		год
Л1.1	Распопов В.Е.,	Компьютерные методы решения задач	Красноярск:
	Шайдуров В.В.	математической физики: [учеб-метод.	СФУ, 2018
		материалы к изучению дисциплины	
		для02.04.01.01 Математическое и	
		компьютерное моделирование,	
		02.04.01.02 Вычислительная математика]	

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

	6.1. Основная литература				
	Авторы,	Заглавие	Издательство,		
	составители		год		
Л1.1	Ковеня В. М.,	Алгоритмы расщепления при решении	Новосибирск:		
	Шокин Ю. И.	многомерных задач аэрогидродинамики: [монография]	Издательство СО РАН, 2014		
Л1.2	Бахвалов Н. С., Жидков Н. П., Кобельков Г. М.	Численные методы: Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для студентов физико-математических специальностей высших учебных заведений	Москва: БИНОМ, 2015		
	6.2. Дополнительная литература				
	Авторы,	Заглавие	Издательство,		
	составители		год		
Л2.1	Рождественский	Системы квазилинейных уравнений и их	Москва: Наука,		
	Б. Л., Яненко Н. Н.	приложений к газовой динамике: монография	Гл. ред. физмат. лит., 1978		
Л2.2	Марчук Г. И.	Методы расщепления: монография	Москва: Наука,		
			Гл. ред. физмат. лит., 1988		
Л2.3	Марчук Г. И.	Методы вычислительной математики:	Москва: Лань,		
		учебное пособие	2009		

Л2.4	Годунов С. К.,	Численное решение многомерных задач	Москва: Наука,
	Забродин А. В., Иванов М. Я., Крайко А. Н., Прокопов Г. П., Годунов С. К.	газовой динамики: монография	Гл. ред. физмат. лит., 1976
Л2.5	Рябенький В. С.	Введение в вычислительную математику: [учебное пособие]	Москва: Физматлит, 2000
Л2.6	Шокин Ю. И., Яненко Н. Н.	Метод дифференциального приближения: монография	Новосибирск: Наука. Сибирское отделение [CO], 1979
Л2.7	Толстых А. И., Белоцерковский О. М.	Компактные разностные схемы и их применение в задачах аэрогидродинамики: монография	Москва: Наука, 1990
Л2.8	Яненко Н. Н.	Метод дробных шагов решения многомерных задач математической физики: монография	Новосибирск: Наука. Сибирское отделение [CO], 1967
Л2.9	Самарский А. А., Вабищевич П. Н.	Вычислительная теплопередача	Mocква: URSS, 2009
Л2.1 0	Каханер Д., Моулер К., Нэш С., Икрамов Х.Д.	Численные методы и программное обеспечение: пер. с англ.	Москва: Мир, 1998
Л2.1 1	Оран Э. С., Борис Дж. П., Зимонт В. Л., Чушкин П. И.	Численное моделирование реагирующих потоков: перевод с английского	Москва: Мир, 1990
Л2.1 2	Петров И. Б., Лобанов А. И.	Лекции по вычислительной математике: учебное пособие	Москва: Интернет- Университет Информационны х Технологий, 2006
Л2.1 3	Андерсон Д., Танненхил Д., Плетчер Р., Подвидза Г. Л.	Вычислительная гидромеханика и теплообмен: Т. 1: перевод с английского: в 2 томах	Москва: Мир, 1990
Л2.1 4	Андерсон Д., Танненхил Д., Плетчер Р., Подвидза Г. Л.	Вычислительная гидромеханика и теплообмен: Т. 2: перевод с английского: в 2 томах	Москва: Мир, 1990
Л2.1 5	Ковеня В. М., Яненко Н. Н., Шокин Ю. И.	Метод расщепления в задачах газовой динамики: монография	Новосибирск: Наука. Сибирское отделение [CO], 1981

Л2.1	Самарский А. А.,	Численные методы решения обратных Москва:		
6	Вабищевич П. Н.	задач математической физики: [учебное	Эдиториал	
		пособие]	УРСС, 2004	
Л2.1	Косарев В.И.	12 лекций по вычислительной	, 2000	
7		математике (вводный курс): учеб.		
		пособие для вузов		
6.3. Методические разработки				
	Авторы,	Заглавие	Издательство,	
	составители		год	
Л3.1	Распопов В.Е.,	Компьютерные методы решения задач	Красноярск:	
	Шайдуров В.В.	математической физики: [учеб-метод.	СФУ, 2018	
		материалы к изучению дисциплины		
		для02.04.01.01 Математическое и		
		компьютерное моделирование,		
		02.04.01.02 Вычислительная математика]		

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Э1	Matlab	http://matlab.ru/products/matlab
Э2	21 1	http://pts-
		russia.com/products/mathcad/learning-
		and-download.html

8 Методические указания для обучающихся по освоению дисциплины (модуля)

Для самостоятельного изучения теоретического материала используются учебники и учебные пособия, приведенные в списке литературы. Самостоятельное изучение теоретического материала подразумевает:

- более глубокую проработку лекционного материала;
- написание небольших иллюстрационных примеров, расширяющих лекционный материал.

Задания по написанию иллюстративных примеров даются в ходе лекций преподавателем, выполняются каждым студентом письменно и обсуждаются в аудитории после проверки.

Основной способ контроля самостоятельного изучения теоретического материала – коллективное обсуждение в аудитории, тестирование.

Основной способ контроля самостоятельной работы, связанной с подготовкой к лабораторным работам, — коллективное обсуждение в аудитории и индивидуальное собеседование при сдаче лабораторных работ.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья предоставляются в формах, адаптированных к

ограничениям их здоровья и восприятия информации в зависимости от нозологии:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Формой промежуточного контроля по дисциплине является экзамен. Экзамен проводится в устной форме. Студенту предлагается билет, состоящий из двух теоретических вопросов. В фонде оценочных средств приведен список вопросов и примеры экзаменационных билетов. При недостаточно полном ответе студенту могут быть заданы дополнительные вопросы.

Критерии оценки:

- оценка «отлично» выставляется обучающемуся, если он глубоко программный материал, исчерпывающе, прочно усвоил И последовательно, четко и логически стройно его излагает, умеет тесно теорию с практикой, свободно справляется с задачами, применения знаний, вопросами И другими видами причем затрудняется с ответом при видоизменении заданий;
- оценка «хорошо» выставляется обучающемуся, если он твердо знает материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения;
- оценка «удовлетворительно» выставляется обучающемуся, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала;
- оценка «неудовлетворительно» выставляется обучающемуся, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями отвечает на связанные вопросы.

- 9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)
 - 9.1 Перечень необходимого программного обеспечения
- 9.1.1 Математические пакеты Mathcad, Matlab.
 - 9.2 Перечень необходимых информационных справочных систем
- 9.2.1 Не требуется.
- 10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Компьютерные класс, оборудованный маркерной, интерактивной или меловой доской.